Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Poly[[bis(pyridine- κN)copper(II)]- $\mu_{3}-$ 5-hydroxyisophthalato- $\left.\kappa^{3} O: O^{\prime}: O^{\prime \prime}\right]$

Xin-Yi Cao, ${ }^{\text {a,b }}$ Jian Zhang, ${ }^{\text {a }}$ Yao Kang, ${ }^{\text {a }}$ Jian-Kai Cheng ${ }^{\text {a }}$ and Yuan-Gen Yao ${ }^{\text {a* }}$
${ }^{\text {a }}$ The State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China, and ${ }^{\mathbf{b}}$ Graduate School, The Chinese Academy of Sciences, Beijing 100039, People's Republic of China
Correspondence e-mail: yyg@ms.fjirsm.ac.cn

Received 14 September 2004
Accepted 28 October 2004
Online 23 November 2004
In the title compound, $\left[\mathrm{Cu}\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{5}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2}\right]_{n}$ or $[\mathrm{Cu}(\mathrm{OH}-$ $\left.\mathrm{BDC})(\mathrm{py})_{2}\right]_{n}$ (where $\mathrm{OH}-\mathrm{H}_{2} \mathrm{BDC}$ is 5 -hydroxyisophthalic acid and py is pyridine), the Cu atoms are coordinated by two N atoms from the pyridine ligands and by three O atoms from hydroxyisophthalate ligands in a highly distorted triangular bipyramidal environment, with $\mathrm{Cu}-\mathrm{O}$ distances in the range 1.941 (4) -2.225 (5) \AA and $\mathrm{Cu}-\mathrm{N}$ distances of 2.014 (6) and 2.046 (6) \AA. The $[\mathrm{Cu}(\mathrm{OH}-\mathrm{BDC})]_{n}$ two-dimensional network is built up from interlocking 22-, 15- and eight-membered rings via sharing of Cu atoms and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. Consolidation of the packing structure is achieved by edge- or point-to-face $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions and offset or slipped $\pi-\pi$ stacking interactions.

Comment

The design and syntheses of supramolecular coordination polymer networks, especially those constructed via hydrogen bonding and $\pi-\pi$ stacking interactions, has been a field of rapid growth because of the special physical properties of these compounds and their potential applications in functional materials (Atwood et al., 1996; Barton et al., 1999). Coordination polymers containing symmetric multidentate benzenecarboxylate molecules as bridging ligands have attracted increasing attention because of their interesting network structures and potential applications in many fields (Li et al., 1999; Yaghi et al., 1995; Chui et al., 1999). Large numbers of coordination polymers have been prepared from metal ions and aromatic carboxylate ligands, such as benzenehexacarboxylate (Wu et al., 1996), 1,3-benzenedicarboxylate (Reineke et al., 1999) and 1,3,5-benzenetricarboxylate (Yaghi et al., 1997; Daiguebonne et al., 1999; Gutschke et al., 1996). 5-Hydroxyisophthalic acid, OH$\mathrm{H}_{2} \mathrm{BDC}$, like benzene-1,3,5-tricarboxylic acid, has two carboxylic acid groups arranged meta with respect to one another, but with a phenol hydroxy group meta to both (Plate et al., 2001). This phenol hydroxy group was intended as a
mimic for the third carboxy group, which remains protonated in the reported layered and helical chain polymers (Foreman et al., 1999; Cao et al., 2004), as well as in the title compound. As part of our research interest in new poly(carboxylic acid)bridged polymeric complexes, the title complex, (I), was obtained by the hydrothermal reaction of $\mathrm{OH}-\mathrm{H}_{2} \mathrm{BDC}$ with cupric acetate and pyridine (py).

(I)

As shown in Fig. 1, the Cu atoms in (I) are five-coordinate in a highly distorted triangular bipyramidal environment involving two N atoms from the pyridine ligands and three O atoms from hydroxyisophthalate ligands, with $\mathrm{Cu}-\mathrm{O}$ distances in the range 1.941 (4)-2.225 (5) \AA and $\mathrm{Cu}-\mathrm{N}$ distances of 2.014 (6) and 2.046 (6) A (Table 1). These bond distances are similar to those found in $\left\{\left[\mathrm{Cu}_{2}(1,3-\mathrm{bdc})_{2}(\mathrm{py})_{2}\right]_{4}\right\}_{n}(1,3$-bdc is 1,3-benzenedicarboxylate; Bourne, Lu et al., 2001), [$\mathrm{Cu}_{3}{ }^{-}$ (TMA) $\left.)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]_{n}$ (TMA is benzene-1,3,5-tricarboxylate; Chui et al., 1999), $\left[\mathrm{Cu}_{2}(\mathrm{bdc})_{2}(\mathrm{Q})_{2}\right]_{n}$ (Q is quinoline; Moulton et al., 2003) and the closest relative catena-[$\left(\mu_{3}\right.$-benzene-1,3-dicarboxylato)bis(pyridine)copper], $\left[\mathrm{Cu}(1,3 \text {-bdc)(py) })_{n}\right.$ (Bourne, Mondal \& Zaworotko, 2001). The dihedral angle between the two py rings that coordinate to the same Cu atom is 75.41°. The asymmetric unit thus consists of one Cu atom, two pyridine ligands and one hydroxyisophthalate ligand. The

Figure 1
The structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are plotted at the 30% probability level. Atoms labeled with the suffixes A and B are at the symmetry positions $(-x, 2-y, 1-z)$ and $\left(\frac{1}{2}+x, \frac{3}{2}-y,-\frac{1}{2}+z\right)$, respectively.

5-hydroxyisophthalate group acts as a tridentate ligand in this structure, with one carboxylate group bonding in a monodentate fashion to one Cu atom and the two remaining O atoms bonding in a monodentate fashion to two further Cu atoms. As illustrated in Fig. 2, the interesting feature of polymer (I) is that the $\mathrm{OH}-\mathrm{BDC}$ ligands link copper centers in different ways to produce three different subrings, $\mathrm{Cu} \cdots \mathrm{Cu}$ distances of 16.935 (5), 9.814 (2) and 4.523 (3) Å, respectively. The two-dimensional network of $[\mathrm{Cu}(\mathrm{OH}-\mathrm{BDC})]_{n}$ moieties also contains an $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond $[\mathrm{O} 5-\mathrm{H} 5 A=$ $0.82 \AA, \mathrm{H} 5 A \cdots \mathrm{O} 3^{\mathrm{iii}}=1.94 \AA, \mathrm{O} 5 \cdots \mathrm{O} 3^{\mathrm{iii}}=2.752(8) \AA$ and O5-H5A $\cdots \mathrm{O} 3{ }^{\text {iii }}=174 \AA$; symmetry code: (iii) $-x-\frac{1}{2}, y-\frac{1}{2}$, $-z+\frac{3}{2}$] and can be envisaged as being built up from interlocking $R_{1}^{1}(15), R_{2}^{2}(22)$ and eight-membered rings. The coordinated pyridine rings point to the layer regions alternately above and below the two-dimensional net as terminal ligands. Finally, as illustrated in Fig. 3, the two-dimensional $[\mathrm{Cu}(\mathrm{OH}-$ $\left.\mathrm{BDC})(\mathrm{py})_{2}\right]_{n}$ layers are assembled into a three-dimensional framework via edge- or point-to-face $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions and offset or slipped $\pi-\pi$ stacking interactions, in which the mean $\mathrm{C}-\mathrm{H} \cdots \pi$ and $\pi-\pi$ hydrogen-bonding distances are

Figure 2
A view of (I), showing how the organization of the two different subrings contributes to the construction of the $[\mathrm{Cu}(\mathrm{OH}-\mathrm{BDC})]_{n}$ two-dimensional network.

Figure 3
A packing diagram of the title compound, showing the complex C $\mathrm{H} \cdots \pi$ and $\pi-\pi$ interactions, with hydrogen bonds shown as dashed lines.
3.627 (8) and 3.653 (3) Å, respectively (Janiak, 2000). The dihedral angle between two $\pi-\pi$ interacting py rings is 22.83° and the distance between the centroids of the two py rings is 4.131 (1) Å.

Experimental

For the preparation of the title compound, a mixture of $\mathrm{Cu}-$ $\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O} \quad(0.4 \mathrm{mmol}), \quad \mathrm{OH}-\mathrm{H}_{2} \mathrm{BDC}(0.3 \mathrm{mmol})$, pyridine $(0.6 \mathrm{mmol}), \mathrm{NaOH}(0.5 \mathrm{mmol})$ and water $(15 \mathrm{ml})$ was sealed in a 25 ml stainless steel reactor with a Teflon liner. The reaction system was heated at 433 K for 60 h , and then cooled slowly to room temperature. A large number of green crystals of the title complex were obtained and collected by filtration, washed with water and dried in air (56.2% yield based on $\mathrm{H}_{3} \mathrm{OABDC}$).

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{5}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2}\right]$
$M_{r}=401.85$
Monoclinic, $P 2_{1} / n$
$a=10.1055$ (9) A
$b=11.6854$ (11) A
$c=15.7236$ (14) \AA
$\beta=102.415$ (2) ${ }^{\circ}$
$V=1813.3(3) \AA^{3}$
$Z=4$

Data collection

Siemens SMART CCD areadetector diffractometer
φ and ω scans
Absorption correction: empirical
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.802, T_{\text {max }}=1.000$
5825 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.071$
$w R\left(F^{2}\right)=0.192$
$S=1.07$
3159 reflections
235 parameters
H -atom parameters constrained
Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Cu}-\mathrm{O} 2$	$1.941(4)$	$\mathrm{Cu}-\mathrm{N} 1$	$2.046(6)$
$\mathrm{Cu}-\mathrm{O} 4^{\mathrm{i}}$	$1.955(4)$	$\mathrm{Cu}-\mathrm{O} 1^{\mathrm{ii}}$	$2.225(5)$
$\mathrm{Cu}-\mathrm{N} 2$	$2.014(6)$		
$\mathrm{O} 2-\mathrm{Cu}-\mathrm{O} 4^{\mathrm{i}}$	$157.2(2)$	$\mathrm{N} 2-\mathrm{Cu}-\mathrm{N} 1$	$175.0(2)$
$\mathrm{O} 2-\mathrm{Cu}-\mathrm{N} 2$	$94.0(2)$	$\mathrm{O} 2-\mathrm{Cu}-\mathrm{O} 1^{i i}$	$108.26(19)$
$\mathrm{O} 4^{\mathrm{i}}-\mathrm{Cu}-\mathrm{N} 2$	$89.6(2)$	$\mathrm{O} 4^{\mathrm{i}}-\mathrm{Cu}-\mathrm{O} 1^{\mathrm{ii}}$	$93.81(18)$
$\mathrm{O} 2-\mathrm{Cu}-\mathrm{N} 1$	$88.9(2)$	$\mathrm{N} 2-\mathrm{Cu}-\mathrm{O} 1^{1 i}$	$95.1(2)$
$\mathrm{O} 4^{\mathrm{i}}-\mathrm{Cu}-\mathrm{N} 1$	$86.2(2)$	$\mathrm{N} 1-\mathrm{Cu}-\mathrm{O} 1^{1 i}$	$88.0(2)$

Symmetry codes: (i) $\frac{1}{2}+x, \frac{3}{2}-y, z-\frac{1}{2}$; (ii) $-x, 2-y, 1-z$.

All H atoms were placed at calculated positions and refined with isotropic displacement parameters, using a riding model $[\mathrm{C}-\mathrm{H}=$ $0.93 \AA, \mathrm{O}-\mathrm{H}=0.82 \AA$, and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$ and $\left.1.5 U_{\text {eq }}(\mathrm{O})\right]$.

Data collection: SMART (Siemens, 1996); cell refinement: SMART and SAINT (Siemens, 1994); data reduction: XPREP in SHELXTL (Siemens, 1994); program(s) used to solve structure: SHELXTL; program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

metal-organic compounds

This work was supported by the National Natural Science Foundation of China under project No. 20173063, the State Key Basic Research and Development Plan of China (grant No. 001CB108906), and the NSF of Fujian Province (grant No. E0020001).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: AV1213). Services for accessing these data are described at the back of the journal.

References

Atwood, J. L., Davies, J. E. D., MacNicol, D. D., Vögtle, F. \& Lehn, J.-M. (1996). In Comprehensive Supramolecular Chemistry, Vol. 9. New York: Pergamon Press.
Barton, T. J., Bull, L. M., Klemperer, W. G., Loy, D. A., McEnaney, B., Misono, M., Monson, P. A., Pez, G., Scherer, G. W., Vartuli, J. C. \& Yaghi, O. M. (1999). Chem. Mater. 11, 2633-2656.

Bourne, S. A., Lu, J. J., Mondal, A., Moulton, B. \& Zaworotko, M. J. (2001). Angew. Chem. Int. Ed. 40, 2111-2113.
Bourne, S. A., Mondal, A. \& Zaworotko, M. J. (2001). Cryst. Eng. 4, 25-36.
Cao, X.-Y., Zhang, J., Kang, Y., Cheng, J.-K., Li, Z.-J., Wang, X.-Q., Wen, Y.-H. \& Yao, Y.-G. (2004). Acta Cryst. C60, m350-m352.
Chui, S. S. Y., Lo, S. M. F., Charmant, J. P. H., Orpen, A. G. \& Williams, L. D. (1999). Science, 283, 1148-1150.

Daiguebonne, C., Guilloa, O., Gerault, Y., Lecerf, A. \& Boubekeur, K. (1999). Inorg. Chim. Acta, 284, 139-145.
Foreman, M. R. St J., Plater, M. J. \& Slawin, A. M. Z. (1999). J. Chem. Soc. Dalton Trans. pp. 4209-4216.
Gutschke, M. O. H., Molinier, M., Powell, A. K., Winpenny, R. E. P. \& Wood, P. T. (1996). J. Chem. Soc. Chem. Commun. pp. 823-824.

Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.
Li, H. L., Eddaoudi, M., O’Keeffe, M. \& Yaghi, O. M. (1999). Nature (London), 402, 276-279.
Moulton, B., Abourahma, H., Bradner, M. W., Lu, J. J., McManus, G. J. \& Zaworotko, M. J. (2003). J. Chem. Soc. Chem. Commun. pp. 13421343.

Plate, M. J., Foreman, M. R. St J., Howie, R. A., Skakle, J. M. S., McWilliam, S. A., Coronado, E. \& Gomez-Garcia, C. J. (2001). Polyhedron, 20, 22932303.

Reineke, T. M., Eddaoudi, M., Fehr, M., Keiley, D. \& Yaghi, O. M. (1999). J. Am. Chem. Soc. 121, 1651-1657.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Siemens (1994). SAINT and SHELXTL (Version 5). Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1996) SMART. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Wu, L. P., Munakata, M., Kuroda-Sowa, T. \& Mackawa, M. (1996). Inorg. Chem. Acta, 249, 183-189.
Yaghi, O. M., Davis, C. E., Li, G. M. \& Li, H. L. (1997). J. Am. Chem. Soc. 119, 2861-2868.
Yaghi, O. M., Li, G. M. \& Li, H. L. (1995). Nature (London), 378, 703706.

